Copied to
clipboard

?

G = C32×2- (1+4)order 288 = 25·32

Direct product of C32 and 2- (1+4)

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C32×2- (1+4), D4.4C62, Q8.7C62, C62.158C23, (C6×Q8)⋊16C6, (C2×C4).8C62, C4.10(C2×C62), (C3×C6).72C24, C6.25(C23×C6), C12.64(C22×C6), C22.3(C2×C62), C2.5(C22×C62), (C3×C12).193C23, (C6×C12).277C22, (D4×C32).35C22, (Q8×C32).38C22, (Q8×C3×C6)⋊19C2, C4○D46(C3×C6), (C2×Q8)⋊7(C3×C6), (C3×C4○D4)⋊13C6, (C2×C12).78(C2×C6), (C3×D4).23(C2×C6), (C3×Q8).36(C2×C6), (C32×C4○D4)⋊14C2, (C2×C6).13(C22×C6), SmallGroup(288,1023)

Series: Derived Chief Lower central Upper central

C1C2 — C32×2- (1+4)
C1C2C6C3×C6C62D4×C32C32×C4○D4 — C32×2- (1+4)
C1C2 — C32×2- (1+4)
C1C3×C6 — C32×2- (1+4)

Subgroups: 468 in 438 conjugacy classes, 408 normal (6 characteristic)
C1, C2, C2 [×5], C3 [×4], C4 [×10], C22 [×5], C6 [×4], C6 [×20], C2×C4 [×15], D4 [×10], Q8 [×10], C32, C12 [×40], C2×C6 [×20], C2×Q8 [×5], C4○D4 [×10], C3×C6, C3×C6 [×5], C2×C12 [×60], C3×D4 [×40], C3×Q8 [×40], 2- (1+4), C3×C12 [×10], C62 [×5], C6×Q8 [×20], C3×C4○D4 [×40], C6×C12 [×15], D4×C32 [×10], Q8×C32 [×10], C3×2- (1+4) [×4], Q8×C3×C6 [×5], C32×C4○D4 [×10], C32×2- (1+4)

Quotients:
C1, C2 [×15], C3 [×4], C22 [×35], C6 [×60], C23 [×15], C32, C2×C6 [×140], C24, C3×C6 [×15], C22×C6 [×60], 2- (1+4), C62 [×35], C23×C6 [×4], C2×C62 [×15], C3×2- (1+4) [×4], C22×C62, C32×2- (1+4)

Generators and relations
 G = < a,b,c,d,e,f | a3=b3=c4=d2=1, e2=f2=c2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=c2e >

Smallest permutation representation
On 144 points
Generators in S144
(1 45 41)(2 46 42)(3 47 43)(4 48 44)(5 96 9)(6 93 10)(7 94 11)(8 95 12)(13 91 72)(14 92 69)(15 89 70)(16 90 71)(17 54 104)(18 55 101)(19 56 102)(20 53 103)(21 78 25)(22 79 26)(23 80 27)(24 77 28)(29 111 33)(30 112 34)(31 109 35)(32 110 36)(37 49 137)(38 50 138)(39 51 139)(40 52 140)(57 65 61)(58 66 62)(59 67 63)(60 68 64)(73 133 129)(74 134 130)(75 135 131)(76 136 132)(81 141 85)(82 142 86)(83 143 87)(84 144 88)(97 115 107)(98 116 108)(99 113 105)(100 114 106)(117 125 121)(118 126 122)(119 127 123)(120 128 124)
(1 73 24)(2 74 21)(3 75 22)(4 76 23)(5 114 64)(6 115 61)(7 116 62)(8 113 63)(9 100 68)(10 97 65)(11 98 66)(12 99 67)(13 104 118)(14 101 119)(15 102 120)(16 103 117)(17 126 91)(18 127 92)(19 128 89)(20 125 90)(25 42 130)(26 43 131)(27 44 132)(28 41 129)(29 138 82)(30 139 83)(31 140 84)(32 137 81)(33 50 86)(34 51 87)(35 52 88)(36 49 85)(37 141 110)(38 142 111)(39 143 112)(40 144 109)(45 133 77)(46 134 78)(47 135 79)(48 136 80)(53 121 71)(54 122 72)(55 123 69)(56 124 70)(57 93 107)(58 94 108)(59 95 105)(60 96 106)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(2 4)(5 7)(9 11)(13 15)(17 19)(21 23)(25 27)(29 31)(33 35)(38 40)(42 44)(46 48)(50 52)(54 56)(58 60)(62 64)(66 68)(70 72)(74 76)(78 80)(82 84)(86 88)(89 91)(94 96)(98 100)(102 104)(106 108)(109 111)(114 116)(118 120)(122 124)(126 128)(130 132)(134 136)(138 140)(142 144)
(1 30 3 32)(2 31 4 29)(5 72 7 70)(6 69 8 71)(9 91 11 89)(10 92 12 90)(13 94 15 96)(14 95 16 93)(17 98 19 100)(18 99 20 97)(21 84 23 82)(22 81 24 83)(25 88 27 86)(26 85 28 87)(33 42 35 44)(34 43 36 41)(37 133 39 135)(38 134 40 136)(45 112 47 110)(46 109 48 111)(49 129 51 131)(50 130 52 132)(53 115 55 113)(54 116 56 114)(57 119 59 117)(58 120 60 118)(61 123 63 121)(62 124 64 122)(65 127 67 125)(66 128 68 126)(73 139 75 137)(74 140 76 138)(77 143 79 141)(78 144 80 142)(101 105 103 107)(102 106 104 108)
(1 117 3 119)(2 118 4 120)(5 50 7 52)(6 51 8 49)(9 38 11 40)(10 39 12 37)(13 76 15 74)(14 73 16 75)(17 80 19 78)(18 77 20 79)(21 104 23 102)(22 101 24 103)(25 54 27 56)(26 55 28 53)(29 58 31 60)(30 59 32 57)(33 62 35 64)(34 63 36 61)(41 121 43 123)(42 122 44 124)(45 125 47 127)(46 126 48 128)(65 112 67 110)(66 109 68 111)(69 129 71 131)(70 130 72 132)(81 107 83 105)(82 108 84 106)(85 115 87 113)(86 116 88 114)(89 134 91 136)(90 135 92 133)(93 139 95 137)(94 140 96 138)(97 143 99 141)(98 144 100 142)

G:=sub<Sym(144)| (1,45,41)(2,46,42)(3,47,43)(4,48,44)(5,96,9)(6,93,10)(7,94,11)(8,95,12)(13,91,72)(14,92,69)(15,89,70)(16,90,71)(17,54,104)(18,55,101)(19,56,102)(20,53,103)(21,78,25)(22,79,26)(23,80,27)(24,77,28)(29,111,33)(30,112,34)(31,109,35)(32,110,36)(37,49,137)(38,50,138)(39,51,139)(40,52,140)(57,65,61)(58,66,62)(59,67,63)(60,68,64)(73,133,129)(74,134,130)(75,135,131)(76,136,132)(81,141,85)(82,142,86)(83,143,87)(84,144,88)(97,115,107)(98,116,108)(99,113,105)(100,114,106)(117,125,121)(118,126,122)(119,127,123)(120,128,124), (1,73,24)(2,74,21)(3,75,22)(4,76,23)(5,114,64)(6,115,61)(7,116,62)(8,113,63)(9,100,68)(10,97,65)(11,98,66)(12,99,67)(13,104,118)(14,101,119)(15,102,120)(16,103,117)(17,126,91)(18,127,92)(19,128,89)(20,125,90)(25,42,130)(26,43,131)(27,44,132)(28,41,129)(29,138,82)(30,139,83)(31,140,84)(32,137,81)(33,50,86)(34,51,87)(35,52,88)(36,49,85)(37,141,110)(38,142,111)(39,143,112)(40,144,109)(45,133,77)(46,134,78)(47,135,79)(48,136,80)(53,121,71)(54,122,72)(55,123,69)(56,124,70)(57,93,107)(58,94,108)(59,95,105)(60,96,106), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (2,4)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)(66,68)(70,72)(74,76)(78,80)(82,84)(86,88)(89,91)(94,96)(98,100)(102,104)(106,108)(109,111)(114,116)(118,120)(122,124)(126,128)(130,132)(134,136)(138,140)(142,144), (1,30,3,32)(2,31,4,29)(5,72,7,70)(6,69,8,71)(9,91,11,89)(10,92,12,90)(13,94,15,96)(14,95,16,93)(17,98,19,100)(18,99,20,97)(21,84,23,82)(22,81,24,83)(25,88,27,86)(26,85,28,87)(33,42,35,44)(34,43,36,41)(37,133,39,135)(38,134,40,136)(45,112,47,110)(46,109,48,111)(49,129,51,131)(50,130,52,132)(53,115,55,113)(54,116,56,114)(57,119,59,117)(58,120,60,118)(61,123,63,121)(62,124,64,122)(65,127,67,125)(66,128,68,126)(73,139,75,137)(74,140,76,138)(77,143,79,141)(78,144,80,142)(101,105,103,107)(102,106,104,108), (1,117,3,119)(2,118,4,120)(5,50,7,52)(6,51,8,49)(9,38,11,40)(10,39,12,37)(13,76,15,74)(14,73,16,75)(17,80,19,78)(18,77,20,79)(21,104,23,102)(22,101,24,103)(25,54,27,56)(26,55,28,53)(29,58,31,60)(30,59,32,57)(33,62,35,64)(34,63,36,61)(41,121,43,123)(42,122,44,124)(45,125,47,127)(46,126,48,128)(65,112,67,110)(66,109,68,111)(69,129,71,131)(70,130,72,132)(81,107,83,105)(82,108,84,106)(85,115,87,113)(86,116,88,114)(89,134,91,136)(90,135,92,133)(93,139,95,137)(94,140,96,138)(97,143,99,141)(98,144,100,142)>;

G:=Group( (1,45,41)(2,46,42)(3,47,43)(4,48,44)(5,96,9)(6,93,10)(7,94,11)(8,95,12)(13,91,72)(14,92,69)(15,89,70)(16,90,71)(17,54,104)(18,55,101)(19,56,102)(20,53,103)(21,78,25)(22,79,26)(23,80,27)(24,77,28)(29,111,33)(30,112,34)(31,109,35)(32,110,36)(37,49,137)(38,50,138)(39,51,139)(40,52,140)(57,65,61)(58,66,62)(59,67,63)(60,68,64)(73,133,129)(74,134,130)(75,135,131)(76,136,132)(81,141,85)(82,142,86)(83,143,87)(84,144,88)(97,115,107)(98,116,108)(99,113,105)(100,114,106)(117,125,121)(118,126,122)(119,127,123)(120,128,124), (1,73,24)(2,74,21)(3,75,22)(4,76,23)(5,114,64)(6,115,61)(7,116,62)(8,113,63)(9,100,68)(10,97,65)(11,98,66)(12,99,67)(13,104,118)(14,101,119)(15,102,120)(16,103,117)(17,126,91)(18,127,92)(19,128,89)(20,125,90)(25,42,130)(26,43,131)(27,44,132)(28,41,129)(29,138,82)(30,139,83)(31,140,84)(32,137,81)(33,50,86)(34,51,87)(35,52,88)(36,49,85)(37,141,110)(38,142,111)(39,143,112)(40,144,109)(45,133,77)(46,134,78)(47,135,79)(48,136,80)(53,121,71)(54,122,72)(55,123,69)(56,124,70)(57,93,107)(58,94,108)(59,95,105)(60,96,106), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (2,4)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)(66,68)(70,72)(74,76)(78,80)(82,84)(86,88)(89,91)(94,96)(98,100)(102,104)(106,108)(109,111)(114,116)(118,120)(122,124)(126,128)(130,132)(134,136)(138,140)(142,144), (1,30,3,32)(2,31,4,29)(5,72,7,70)(6,69,8,71)(9,91,11,89)(10,92,12,90)(13,94,15,96)(14,95,16,93)(17,98,19,100)(18,99,20,97)(21,84,23,82)(22,81,24,83)(25,88,27,86)(26,85,28,87)(33,42,35,44)(34,43,36,41)(37,133,39,135)(38,134,40,136)(45,112,47,110)(46,109,48,111)(49,129,51,131)(50,130,52,132)(53,115,55,113)(54,116,56,114)(57,119,59,117)(58,120,60,118)(61,123,63,121)(62,124,64,122)(65,127,67,125)(66,128,68,126)(73,139,75,137)(74,140,76,138)(77,143,79,141)(78,144,80,142)(101,105,103,107)(102,106,104,108), (1,117,3,119)(2,118,4,120)(5,50,7,52)(6,51,8,49)(9,38,11,40)(10,39,12,37)(13,76,15,74)(14,73,16,75)(17,80,19,78)(18,77,20,79)(21,104,23,102)(22,101,24,103)(25,54,27,56)(26,55,28,53)(29,58,31,60)(30,59,32,57)(33,62,35,64)(34,63,36,61)(41,121,43,123)(42,122,44,124)(45,125,47,127)(46,126,48,128)(65,112,67,110)(66,109,68,111)(69,129,71,131)(70,130,72,132)(81,107,83,105)(82,108,84,106)(85,115,87,113)(86,116,88,114)(89,134,91,136)(90,135,92,133)(93,139,95,137)(94,140,96,138)(97,143,99,141)(98,144,100,142) );

G=PermutationGroup([(1,45,41),(2,46,42),(3,47,43),(4,48,44),(5,96,9),(6,93,10),(7,94,11),(8,95,12),(13,91,72),(14,92,69),(15,89,70),(16,90,71),(17,54,104),(18,55,101),(19,56,102),(20,53,103),(21,78,25),(22,79,26),(23,80,27),(24,77,28),(29,111,33),(30,112,34),(31,109,35),(32,110,36),(37,49,137),(38,50,138),(39,51,139),(40,52,140),(57,65,61),(58,66,62),(59,67,63),(60,68,64),(73,133,129),(74,134,130),(75,135,131),(76,136,132),(81,141,85),(82,142,86),(83,143,87),(84,144,88),(97,115,107),(98,116,108),(99,113,105),(100,114,106),(117,125,121),(118,126,122),(119,127,123),(120,128,124)], [(1,73,24),(2,74,21),(3,75,22),(4,76,23),(5,114,64),(6,115,61),(7,116,62),(8,113,63),(9,100,68),(10,97,65),(11,98,66),(12,99,67),(13,104,118),(14,101,119),(15,102,120),(16,103,117),(17,126,91),(18,127,92),(19,128,89),(20,125,90),(25,42,130),(26,43,131),(27,44,132),(28,41,129),(29,138,82),(30,139,83),(31,140,84),(32,137,81),(33,50,86),(34,51,87),(35,52,88),(36,49,85),(37,141,110),(38,142,111),(39,143,112),(40,144,109),(45,133,77),(46,134,78),(47,135,79),(48,136,80),(53,121,71),(54,122,72),(55,123,69),(56,124,70),(57,93,107),(58,94,108),(59,95,105),(60,96,106)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(2,4),(5,7),(9,11),(13,15),(17,19),(21,23),(25,27),(29,31),(33,35),(38,40),(42,44),(46,48),(50,52),(54,56),(58,60),(62,64),(66,68),(70,72),(74,76),(78,80),(82,84),(86,88),(89,91),(94,96),(98,100),(102,104),(106,108),(109,111),(114,116),(118,120),(122,124),(126,128),(130,132),(134,136),(138,140),(142,144)], [(1,30,3,32),(2,31,4,29),(5,72,7,70),(6,69,8,71),(9,91,11,89),(10,92,12,90),(13,94,15,96),(14,95,16,93),(17,98,19,100),(18,99,20,97),(21,84,23,82),(22,81,24,83),(25,88,27,86),(26,85,28,87),(33,42,35,44),(34,43,36,41),(37,133,39,135),(38,134,40,136),(45,112,47,110),(46,109,48,111),(49,129,51,131),(50,130,52,132),(53,115,55,113),(54,116,56,114),(57,119,59,117),(58,120,60,118),(61,123,63,121),(62,124,64,122),(65,127,67,125),(66,128,68,126),(73,139,75,137),(74,140,76,138),(77,143,79,141),(78,144,80,142),(101,105,103,107),(102,106,104,108)], [(1,117,3,119),(2,118,4,120),(5,50,7,52),(6,51,8,49),(9,38,11,40),(10,39,12,37),(13,76,15,74),(14,73,16,75),(17,80,19,78),(18,77,20,79),(21,104,23,102),(22,101,24,103),(25,54,27,56),(26,55,28,53),(29,58,31,60),(30,59,32,57),(33,62,35,64),(34,63,36,61),(41,121,43,123),(42,122,44,124),(45,125,47,127),(46,126,48,128),(65,112,67,110),(66,109,68,111),(69,129,71,131),(70,130,72,132),(81,107,83,105),(82,108,84,106),(85,115,87,113),(86,116,88,114),(89,134,91,136),(90,135,92,133),(93,139,95,137),(94,140,96,138),(97,143,99,141),(98,144,100,142)])

Matrix representation G ⊆ GL5(𝔽13)

30000
09000
00900
00090
00009
,
90000
09000
00900
00090
00009
,
10000
000105
000113
010500
011300
,
120000
01000
00100
000120
000012
,
120000
05000
06800
00080
00075
,
10000
02100
081100
0001112
00052

G:=sub<GL(5,GF(13))| [3,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,0,0,10,11,0,0,0,5,3,0,10,11,0,0,0,5,3,0,0],[12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,5,6,0,0,0,0,8,0,0,0,0,0,8,7,0,0,0,0,5],[1,0,0,0,0,0,2,8,0,0,0,1,11,0,0,0,0,0,11,5,0,0,0,12,2] >;

153 conjugacy classes

class 1 2A2B···2F3A···3H4A···4J6A···6H6I···6AV12A···12CB
order122···23···34···46···66···612···12
size112···21···12···21···12···22···2

153 irreducible representations

dim11111144
type+++-
imageC1C2C2C3C6C62- (1+4)C3×2- (1+4)
kernelC32×2- (1+4)Q8×C3×C6C32×C4○D4C3×2- (1+4)C6×Q8C3×C4○D4C32C3
# reps15108408018

In GAP, Magma, Sage, TeX

C_3^2\times 2_-^{(1+4)}
% in TeX

G:=Group("C3^2xES-(2,2)");
// GroupNames label

G:=SmallGroup(288,1023);
// by ID

G=gap.SmallGroup(288,1023);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-2,2045,1016,1563,772,4259]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=d^2=1,e^2=f^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c^2*e>;
// generators/relations

׿
×
𝔽